This is a Math blog Provides you various integration tips which makes your integration easy.You can utilize this blog for various entrance examinations,daily studies etc.
Monday, June 28, 2021
Find the value of integral ∫x³/(x+1) dx ?
Sunday, June 27, 2021
Find the value of the integral $\displaystyle \int \frac{x+\sin x}{1+\cos x} dx$ =?
To find the value of the integral ,consider the following trigonometric formulas:
\[\therefore \int \frac{(x+\sin x)}{1+\cos x} \; dx= x \; \tan \frac{x}{2} +C\]
😀😀😀
Saturday, June 26, 2021
If ∫x³ dx/(√(1+x²) = a (1+ x²)³/² +b√(1+x²)+ C, then a and b is given by:$\\ \mathbf{\;A)\; a=\frac{1}{3} , b=1.\; B)\; a=-\frac{1}{3}, b=1\; \\ C)\; a=-\frac{1}{3}, b=-1\; D)\; a=\frac{1}{3},b=-1} $
We have
$\displaystyle \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx= a(1+x^{2})^{\frac{3}{2}}+b\sqrt{(1+x^{2})}+C \cdots (1)$
In-order to find value of a and b , at first we have to evaluate the integral $\displaystyle \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx$ .
Now
$\displaystyle \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx=\int \frac{x^{2}\;.\: x}{\sqrt{(1+x^{2})}} \; dx$
Take
$\displaystyle 1+x^{2}=u\Rightarrow 2x=\frac{\mathrm{d} u}{\mathrm{d} x}\mathbf{(Differentiating \; w.r.t \; x)}\\ \Rightarrow x \; dx=\frac{du}{2}$
Now by substituting $\displaystyle 1+x^{2}=u$ we will get
\[\begin{align*} \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx &= \int \frac{u-1}{\sqrt{u}} \frac{du}{2}\\ &= \frac{1}{2}\int \frac{u}{\sqrt{u}}- \frac{1}{\sqrt{u}} \; du\\ &=\frac{1}{2}[\int \frac{\sqrt{u}}{1}\; du-\int \frac{1}{\sqrt{u}}\; du] \\ &= \frac{1}{2}[\int u^{\frac{1}{2}}\; du-\int u^{-\frac{1}{2}}\; du]\\ &=\frac{1}{2}[\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}]+C \\ &=\frac{1}{2}[\frac{u^{3/2}}{3/2}-\frac{u^{1/2}}{1/2}] +C \\&= \frac{u^{3/2}}{3}-u^{1/2}+C \end{align*}\]
Thursday, June 24, 2021
$\displaystyle \int_{-\frac{\pi}{4}}^{\frac{\pi }{4}} \frac{dx}{1+\cos 2x}=\\ a) \;\; 1 \; \; b)\;\; 2\; \; c)\; \; 3\; \; d)\; \; 4$
Let $\displaystyle f(x)=\frac{1}{1+\cos 2x}\\$
Here $\displaystyle f(-x)=f(x)$
Monday, June 21, 2021
$\displaystyle \int_{0}^{\pi /2} \sqrt{(1- \sin 2x)}=\\ a)2\sqrt{2} \; \; \; b)2(\sqrt{2}+1)\; \; \; c) 2 \; \; \; d)2(\sqrt{2}-1)$
Method 1
In order to find solution consider the properties of definite integral
Now consider the property 1, take $f(x)=\sqrt{1-\sin 2x}$ , $\displaystyle a= \frac{\pi }{4}$ and
$f(2a-x)=f(2\frac{\pi }{4} -x)=f(\frac{\pi }{2}-x)$ .
Here
\[\begin{align*} f(2a-x) &=f(\frac{\pi }{2}-x ) \\ &= \sqrt{1-\sin 2(\frac{\pi }{2}-x)}\\ &= \sqrt{1-\sin (\pi -2x)}\\ &=\sqrt{1-\sin 2x} \; \; (\sin (\pi -x)=\sin x)\\ &= f(x) \end{align*}\]
\[\begin{align*} \int_{0}^{2\frac{\pi}{4}=\frac{\pi }{2}}\sqrt{1-\sin 2x}\; dx &=2\int_{0}^{ \frac{\pi}{4}}\sqrt{1-\sin 2x}\; dx \\ &=2\int_{0}^{ \frac{\pi}{4}}\sqrt{1-\sin 2(\frac{\pi }{4}-x)}\; dx \; (by\; property \; 2 )\\ &=2\int_{0}^{ \frac{\pi}{4}}\sqrt{1-\sin (\frac{\pi }{2}-2x)}\; dx \\&=2\int_{0}^{ \frac{\pi}{4}}\sqrt{1-\cos 2x}\; dx \: \; (\because \sin (\frac{\pi }{2}-2x)= \cos 2x)\\ &=2\int_{0}^{ \frac{\pi}{4}}\sqrt{2\sin ^{2} x}\; dx \; \; (\because 1-\cos 2x= 2\sin ^{2} x )\\ &=2\int_{0}^{ \frac{\pi}{4}}\sqrt{2}\sin x \; dx \; \; (\because \sqrt{\sin ^{2}x}=\sin x\; for\; 0\leq x\leq \frac{\pi }{4})\\ &=2\sqrt{2}\left [ -\cos x \right ]_{0}^{\frac{\pi }{4}} \\ &=2\sqrt{2} \left [ -\cos \frac{\pi }{4}+\cos 0 \right ]\\ &= 2\sqrt{2}[-\frac{1}{\sqrt{2}}+1]\\&= 2[-1+\sqrt{2}]\\&= 2[\sqrt{2}-1] \end{align*}\]
Hence correct answer:(d)
Method 2
In order to find solution consider the definite integral
Tuesday, June 15, 2021
$\int_{0}^{\frac{\pi }{2}} e^{\sin x} \cos x \; dx$ = ...
For finding the value of the integral $\int_{0}^{\frac{\pi }{2}} e^{\sin x} \cos x \; dx$ we are going to use substitution method.
i.e., Put $\sin x=u$
Now by substituting u instead of $\sin x$ we will get
\[\int e^{\sin x} \cos x \; dx = \int e^{u} \; du.\]
Next we have to apply limit for finding the value of integral.We have two methods:
Method1: Applying limit after integrating the function
\[\int e^{u} \; du. = e^{u} = e^{\sin x} (\because definite \; not \; using\; constant C) \]
\[\int_{0}^{\frac{\pi }{2}} e^{\sin x} \cos x\; dx. = \left [e^{\sin x} \right ]_{0}^{\frac{\pi }{2}}\]
Method2: Changing the limit before evaluating integral.
At first we have to find limits of integration before evaluating it.
i.e,We have to find value of u when $\displaystyle x=0 \; and \; x=\pi /2$ .
$x=0 \; \Rightarrow u= \sin 0=0 $
Sunday, June 13, 2021
Find the value of the integral $\int \frac{(x+3)}{(x+4)^{2}} e^{x} \: dx$
For finding the value of the integral $\int \frac{(x+3)}{(x+4)^{2}} e^{x} \: dx$ , consider the property of indefinite integral:
Saturday, June 12, 2021
The value of $\int_{-\pi }^{\pi } \sin ^{3} x \cos ^{2} x \: dx=... ?$
For finding the value of $\int_{-\pi }^{\pi } \sin ^{3} x \cos ^{2} x \: \mathbf{dx}$ :
And \[\begin{align*} f(-x) &= \sin ^{3}(-x) \cos ^{2}(-x) \\ &= (\sin (\, -x))^{3}(\cos (\, -x))^{2} \\ &= (-\sin x)^{3} (\cos x)^{2} \; \; [\because \sin (-x)=-\sin x \; and\; \cos (-x)=\cos x]\\ &= -\sin ^{3} x \cos ^{2} x\\ &= -f(x) \end{align*}\]
Monday, June 7, 2021
If $\int_{0}^{a} 1/(1+4x^{2}) dx=\pi /8$ ,then a=?
We have \[\int_{0}^{a} 1/(1+4x^{2}) dx=\pi /8\] and our aim is to find the value of a .
\[\int_{0}^{a} \frac{1}{(1+4x^{2})} dx=\left [\frac{1}{1.2} \tan ^{-1} \frac{2x}{1} \right ]_{0}^{a} =\frac{1}{2}[\tan ^{-1} 2a - \tan ^{-1} 0] =\frac{1}{2}\tan ^{-1} 2a \; \: (\because \tan ^{-1} 0=0)\]
\[\therefore \int_{0}^{a} \frac{1}{(1+4x^{2})} dx=\frac{1}{2}\tan ^{-1} 2a \;\]