We have
$\displaystyle \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx= a(1+x^{2})^{\frac{3}{2}}+b\sqrt{(1+x^{2})}+C \cdots (1)$
In-order to find value of a and b , at first we have to evaluate the integral $\displaystyle \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx$ .
Now
$\displaystyle \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx=\int \frac{x^{2}\;.\: x}{\sqrt{(1+x^{2})}} \; dx$
Take
$\displaystyle 1+x^{2}=u\Rightarrow 2x=\frac{\mathrm{d} u}{\mathrm{d} x}\mathbf{(Differentiating \; w.r.t \; x)}\\ \Rightarrow x \; dx=\frac{du}{2}$
Now by substituting $\displaystyle 1+x^{2}=u$ we will get
\[\begin{align*} \int \frac{x^{3}}{\sqrt{(1+x^{2})}} \; dx &= \int \frac{u-1}{\sqrt{u}} \frac{du}{2}\\ &= \frac{1}{2}\int \frac{u}{\sqrt{u}}- \frac{1}{\sqrt{u}} \; du\\ &=\frac{1}{2}[\int \frac{\sqrt{u}}{1}\; du-\int \frac{1}{\sqrt{u}}\; du] \\ &= \frac{1}{2}[\int u^{\frac{1}{2}}\; du-\int u^{-\frac{1}{2}}\; du]\\ &=\frac{1}{2}[\frac{u^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{u^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}]+C \\ &=\frac{1}{2}[\frac{u^{3/2}}{3/2}-\frac{u^{1/2}}{1/2}] +C \\&= \frac{u^{3/2}}{3}-u^{1/2}+C \end{align*}\]
No comments:
Post a Comment