To find the value of this integral
Consider the integral $\int \frac{sin x }{3+ 4 cos^2 x}$ we can rewrite it as
\[\int \frac{\textbf{sinx}}{{3+ 4 \cos^2 x}}=\int \frac{\sin x}{3+ (2\cos x)^2}\]
For finding the value put $ 2\cos x=t$
By differentiating with respect to x then we will get -2 sin x = dt/dx \[\Rightarrow \sin x dx = -dt/2\]
Hence
\[\int \frac{\textbf{sinx}}{{3+ 4 \cos^2 x}}=\int \frac{-dt}{2(\sqrt{3})^2+ (t)^2)} \]
We have the formulae $\int \mathbf{\frac{1}{a^2 + x^2}}dx = \frac{1}{a} \tan ^{-1} \frac{x}{a}+C$ .
Now by using that we can find value of the given integral
i.e.,
\[\int \frac{-dt}{2((\sqrt{3})^2 +t^2)}=\frac{-1}{2\sqrt{3}}\tan ^{-1}\frac{t}{\sqrt{3}}+C\]
Now by substituting value of t we will get the value of integral as
\[\int \frac{\textbf{sinx}}{{3+ 4 \cos^2 x}} dx=\frac{-1}{2\sqrt{3}}\tan ^{-1}(\frac{2 \cos x}{\sqrt{3}})+C\]
😃😃😃
No comments:
Post a Comment